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Life can persist under severe osmotic stress and low water activity in hypersaline

environments. On Mars, evidence for the past presence of saline bodies of water is

prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here

we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme

(>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated

with ancient Mars. We provide the first characterization of microbial structure in Spotted

Lake sediments through metagenomic sequencing, and report a bacteria-dominated

community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well

as diverse extremophiles. Microbial abundance and functional comparisons reveal

similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom

waters. Our analysis suggests that hypersaline-associated species occupy niches

characterized foremost by differential abundance of Archaea, uncharacterized Bacteria,

and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically

the likelihood of a strong sulfur isotopic fractionation record within the sediments due

to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal

freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which

sulfate salt deposits may have offered periodically habitable environments, and could

have concentrated and preserved organic materials or their biomarkers over geologic

time.

Keywords: mars analog, extremophiles, hypersaline environments, metagenomic, spotted lake, magnesium

sulfate

INTRODUCTION

Hypersaline environments impose severe stresses on microorganisms, such as high osmotic
pressures and potentially low (aw ∼0.75) water activities (Grant, 2004). Despite this, life exists over
a wide range of salt concentrations in naturally occurring environments with an unexpected level
of diversity (Ley et al., 2006). Hypersaline brines have salinities ranging from 35 g/L to more than
400 g/L. Don Juan Pond, a CaCl2-dominated Antarctic brine is considered one of the most saline
bodies of water on Earth (40–45% by mass; Meyer et al., 1962; Marion, 1997; Dickson et al., 2013),
surpassed only by the MgCl2-rich Discovery Brine in the Mediterranean, which can reach levels of
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up to 500 g/L and with the lowest water activity level, aw = 0.382,
recorded for a brine on Earth (Fox-Powell et al., 2016). Brines
can also be highly chaotropic, or membrane destabilizing. Strong
chaotropes such as Ca2+ and Mg2+, when not countered by a
suitable kosmotrope (stabilizing ion), prove incredibly hostile to
life as evidenced by the apparent lack of viable organisms in
both Don Juan Pond and the Discovery Brine. Environments
with high levels of kosmotropic sulfate salts however, can sustain
life if water activity is sufficiently high (Baldwin, 1996). A
saturated MgSO4 solution has an aw = 0.85 (Ha and Chan,
1999), too low for most bacteria to survive but is habitable to
some eukaryotes (Stevenson et al., 2015). At such high salinities,
the ionic strength of a solution can also become a problem for
microorganisms, where a high charge density can perturb cellular
activities (Fox-Powell et al., 2016). Thus, the habitability of a
saline environment relies heavily on water activity, a function of
the ionic composition and concentration of the brine.

Beyond the Earth, orbital and in situ observations of Mars
have revealed that extensive water flows, as well as saline
and acidic fluids, were once present on the planet’s surface
(Tosca et al., 2008). Ancient Mars transitioned from wet to dry
during the Hesperian (beginning 3.7 Ga), a time of ephemeral
lakes, resulting in the widespread deposition of sulfate and
chloride salts observed today on the Martian surface (Wanke
et al., 2001; Clark et al., 2005; Crisler et al., 2012; Goudge
et al., 2016). Magnesium sulfate salts (MgSO4•nH2O) are
common on Mars and are distributed globally, with some
sediments containing 10−30% sulfate by weight (Vaniman
et al., 2004; Gendrin et al., 2005). The presence of hydrated
magnesium sulfates within the rim of Columbia Crater is
ascribed to the existence of a paleolake, which at times
must have been hypersaline in nature (Wray et al., 2011).
Targets for future life-detection missions include such salty
environments that could have once been habitable, and are
relevant today because of their potential to retain water and
generate liquid water brines (McEwen et al., 2011; Möhlmann
and Thomsen, 2011; Chevrier and Valentin, 2012; Karunatillake
et al., 2016).

Most brine environments on Earth contain Cl− as the
dominant anion, however, some are rich in SO4-bearing salts,
such as the Basque Lakes and Hot Lake, which lie within the
Thompson Plateau in British Columbia (Jenkins, 1918; Foster
et al., 2010). This region, located within the rain shadow of the
Coast and Cascade Mountains, has experienced 20 significant
glaciations in the last ∼1 million years (Church and Ryder,
2010), leaving behind a series of drainage basins with no outlets
(endhoreic). A subset of these lakes also have a characteristic
“spotted” appearance, including Spotted Lake, which has some
of the highest magnesium sulfate concentrations in the world.
Such high salt concentrations preserve biosignatures and allow
organic compounds, and even entire cells, to be preserved on
geologic time scales (e.g., Vreeland et al., 2000; Aubrey et al.,
2006). Furthermore, organisms have also been shown to exist
in fluid inclusions trapped in rapidly forming salt crystals, and
viable isolates have been obtained from inclusions that are on the
order of 105 years old (e.g., Mormile et al., 2003; Fendrihan et al.,
2006).

Despite the unique geochemical composition of Spotted Lake,
the microbial diversity of the environment has not been well
studied. Here we describe, for the first time, the biological
diversity within the sediments of Spotted Lake in order to identify
the types of biosignatures that may be preserved, of relevance to
the search for life on Mars.

METHODS

Field Site
Spotted Lake (Figure 1A, Figure S1) is located inOsoyoos, British
Columbia, Canada (49◦4′40.86′′ N, 119◦34′3.01′′ W) within
Carboniferous to Permian green schist facies rocks, along with
dolomites, quartzites, marbles and localized deposits of pyrite
and pyrrhotite (Jenkins, 1918). Oxidation of these iron sulfides
results in the generation of sulfuric acid and the subsequent
weathering of the basin dolomites, yielding high levels of Mg2+

and SO2−
4 that concentrate in the endorheic lake. As a result,

Spotted Lake is rich in magnesium and sodium sulfate salts, and
with a slightly alkaline pH. Due to low levels of precipitation
in this region, summer evaporation leads to the formation of
individual brine pools (Figure 1B), which are separated by mud
mounds (Figure 1C) and surficial salt crusts (Jenkins, 1918;
Cannon et al., 2012). Samples from Spotted Lake were collected
in October 2010 (Table 1); in total, 4 individual ponds were
surveyed and samples including water and sediment (top 5–
10 cm) were aseptically collected in sterile containers. Water
samples were collected first (without disturbing the sediment)
in autoclaved plastic sterilization units with samples immediately
sealed, and subsequently analyzed for pH and ion concentrations
following Wilson et al. (2012). Water activity was measured
in triplicate from two brine pools in the laboratory using an
AquaLab Dew point activity meter 4TE, and on two sediment
samples, at a temperature of 25◦C. Sediments (45–100 g) from
each pond were collected in 50 mL plastic conical tubes and
immediately after collection were transferred to glass test tubes,
which were sealed with rubber stoppers, purged with nitrogen,
and sealed with a crimped metal band before being frozen
at −20◦C. All tubes were placed in a cooler with freezer
packs for shipment, and stored at −80◦C upon arrival. Soil
samples from each pond were sent for inductively coupled
plasma mass spectrometry (ICP MS) analysis, Bureau Veritas,
Canada.

Microscopy
For in situ imaging of the environment, soil samples were
fixed in glutaraldehyde, dehydrated in ethanol and critical-
point dried to preserve cell structure using a Tousimis Auto
Samdri 815 Series A Critical Point Dryer following Dykstra
and Reuss (2003). Samples were then mounted, carbon coated
and imaged using a Zeiss Merlin High-resolution Scanning
Electron Microscope (SEM) at 1 kV. Soil samples were also
imaged to assess viability: soil was stained using Live/Dead
Baclight Bacterial Viability Kit (Life Technologies; now Thermo-
Fisher Scientific, Waltham, MA) and then imaged on a Zeiss
ApoTome 2.
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FIGURE 1 | Spotted Lake. (A) Spotted Lake (black arrow) is located on the edge of the Thompson Plateau (red line). (B) Its hundreds of brine pools are seasonally

connected during periods of higher water levels, and separated during periods of low water input and evaporation. (B) Imagery © 2014 DigitalGlobe, Map data ©

2014 Google. (C) During mining of nearby Hot Lake it was discovered that spots represent the bases of inverted cones or cylindrical eposomite masses that connect

to a more basal horizontal bed underlain by gypsum. Reprinted from Figure 4 of Jenkins (1918) with permission from the American Journal of Science.

TABLE 1 | Geochemistry of Spotted Lake water samples.

Major cations Concentration (mg/L) Molarity (mM)

Mg 51,400 2,115

Na 42,600 1,835

K 3,010 77

Ca 214 5

Major anions Concentration (mg/L) Molarity (mM)

SO4 271,000 2,821

Cl− 2,700 76

Other Concentration (mg/L)

Hardness 212,000

Salinity 370,999

Water activity 0.98

Si 8.2

Values represent an average of four pools.

DNA Extraction and Sequencing
DNA extraction was performed utilizing both a high-input
process (MoBio) and a low-input process (Zymo) to explore
differences in acquired sequencing data due to extraction
protocols (Figure S3). (1) High input method: Genomic DNA
(gDNA) was extracted using the MoBio Powersoil DNA isolation

kit (Carlsbad, CA), and concentrated with Zymo Research
Genomic DNA Clean and Concentrate. Gel electrophoresis and
a NanoDrop Spectrophotometer (Thermo Scientific) were used
to assess gDNA quality and concentration, respectively. (2)
Low input method: gDNA extraction was performed (0.25 g
from each of the four samples) using Zymo Research Soil
Microbe DNA MicroPrep; eluted gDNA was further subjected
to whole genome amplification using phi-29 (GE Healthcare
Illustra Ready-To-Go GenomiPhi V3) to produce enough DNA
for library construction.

The Ion Torrent PGM system (Rothberg et al., 2011), Ion
Xpress Fragment Library and Ion Xpress Template kits were
purchased from Ion Torrent Systems (Guilford, CT). Sequencing,
library construction and template preparation were performed
according to the 200 bp Ion Xpress Fragment Library and
Template Preparation protocols, and libraries S1–S4 (high
input), and Z1–Z4 (low input) for sediment samples 1–4 were
constructed. A single sequencing run was then performed (Table
S1) on a 316 chip using 500 flows (equivalent to 125 cycles).

Metagenomic Analysis
Raw sequencing reads were analyzed with Phylosift v1.0.1
(Darling et al., 2014) using default parameters, which included
quality trimming of FASTQ data. Microbial community structure
was assessed directly from sequencing reads through comparison
to reference sequences (37 near-universal single-copy genes,
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16S and 18S ribosomal genes, mitochondrial genes, eukaryotic-
specific genes, and hundreds of virus-specific genes). Raw
reads were also submitted to MG-RAST to confirm Phylosift
results, and also for further 16S rRNA phylogenetic and
protein functional analyses (Meyer et al., 2008; Glass et al.,
2010). For MG-RAST, the default quality control options for
quality trimming, dereplication, and screening for common
contaminants were used.

In order to compare Spotted Lake metagenomes (Table S2)
with previously-analyzed metagenomes, keyword searches for
salt-associated metagenomes in addition to a few other sets
such as air (in order to include data representing exogenous
environmental seeding) were conducted. The resulting list was
filtered to exclude virus-specific datasets, contigs/assemblies, and
datasets associated with a specific organism, giving a final list of
MG-RAST metagenomes for comparison (Table S3). For each of
these metagenomes a lowest common ancestor (LCA) analysis
was performed at the species level using MG-RAST with the
default settings (max e-value 10−5, min identity cutoff 60%,
min alignment length cutoff 15 bp). An abundance matrix was
constructed with one row per metagenome and one column for
each unique taxonomic key across all metagenomes. The unique
set of taxonomic keys was generated at each taxonomic level and
a separate PCA analysis was done for each taxonomic level from
domain to species (see Supplementary Material, pg. 2).

RESULTS

Geochemistry
Water pH ranged from 8.0 to 8.3, and aw was 0.98 for the
water column, and ranged from 0.96 to 0.99 within the sediment.
Water chemistry measurements revealed brine compositions
consisting of SO4 (2.8 M), Mg (2.1 M), and Na (1.9 M),
with minor contributions from K and Cl (Table 1), nearly
identical to the 1933 historical measurements (McKay, 1935).
Total salinity was measured at 37.1% with an approximate
molar ratio of MgSO4:Na2SO4 of 20:9 consistent with previous
identification (Cannon et al., 2012) of minerals including
epsomite (MgSO4•7H2O) and mixed Mg-Na salts in various
hydration states (Figure 2A), e.g., blöedite, konyaite. ICP-MS
(Table 2) revealed very low silica amounts, <8%, and CaO levels
ranging from 17 to 25%. The percentage total for the major
oxides ranged from 62 to 66%, which was representative of the
fact that a large component of the sediment was comprised of
salt and not detectable using the methodology employed. When
subtracted from the ideal total of 100%, the remaining∼33−37%
was inferred to be sulfate salt, corresponding with the sulfate
concentrations of the water column. Total organic carbon was
low, ranging from 1 to 3%.

Metacommunity
Spotted Lake was found to be host to a diverse set of organisms,
from macroscopic brine shrimp (Figure 2B) to a wide range
of bacteria (Figure 2C). Imaging of the community through
Live/Dead staining revealed a viable population (Figure 2D).
The abundance assessment of the S1–S4 and Z1–Z4 libraries
(representing “high input” vs. “low input” modalities) pooled,

revealed respectively 90 and 88% Bacteria, 10 and 4% Eukarya,
and 3 and 3% Archaea (Figure 3). The S1–S4 and Z1–Z4
libraries varied from each other (Figures 4A–D), especially at
the sub-domain level. Within the high input libraries, dominant
bacterial phyla included Bacteroidetes (33.2%), Proteobacteria
(21.4%), and Firmicutes (14.1%). Alternatively, the low-input
Z1–Z4 library had a dominant contribution from the Firmicutes
(21.3%) only. The highest abundance proteobacterial classes in
S1–S4 were δ/ε-proteobacteria (11.2%), γ-proteobacteria (6.1%),
and α-proteobacteria (3.2%). While highly diverse at the family
to species level, halophiles were well represented, including
the genus Halomonas, previously found in hypersaline (NaCl)
environments, representing 3% of γ-proteobacterial sequences,
and the family Rhodobacteraceae (9%), members of which are
common in seawater, where they play a key role in marine carbon
cycling (Pujalte et al., 2014). Also present were sulfate reducers
of the family Desulfobacteraceae (46%), largely comprised of
organisms most closely related to the genus Desulfotignum,
an obligate anaerobe capable of both chemoorganotrophy and
chemolithotrophy (Kuever et al., 2001). Sequences belonging to
the classes of bacteria lacking a cell wall were also represented:
Mollicutes (8%) and Haloplasmatales (1%), the former of which
is typically a parasite of eukaryotes (Skennerton et al., 2016),
and the latter which is found only in hypersaline environments
(Antunes et al., 2008).

Our results underscore the potential for bias in community
characterization between “low-input” and “high-input”
methodologies, with implications for future Martian expeditions.
Not all low-input samples yielded evidence of Archaeal
sequences (Figure 4A), but consistently demonstrated the
presence of β-proteobacteria, which were largely absent in the
“high-input” libraries (Figure 4D). Utilizing small sample sizes
can result in an over- or underrepresentation of species due to
the location of the subsample within the larger context, especially
where physicochemical boundaries are present, thus care must be
taken to extract multiple sub-samples that adequately represent
the larger sample of interest. Beyond the issues noted with
small sample sizes, whole genome amplification with phi-29
polymerase does result in a preference toward A+T rich genomes
(Yilmaz et al., 2010), which may account for the dominance of
the Firmicutes in these samples.

Analyses of alpha diversity were abundance weighted and
calculated using the Shannon Diversity Index (H’). H’ ranged
from 599 to 704, with an average of 666 for high-input samples,
and 680 to 1,122, with an average of 802, for low-input
samples. To compare species abundance across all metagenomes
(Figure 5A), a lowest common ancestor (LCA) analysis was
performed, using classification down to the species level. This
yielded hits in 17,433 unique taxonomic categories, though
half of the abundance was captured by only 16 taxonomic
categories (Figure 5B). Assessment of the metagenomic datasets
using these highly abundant taxonomic categories revealed some
similarities between Spotted Lake and both hypersaline and
Antarctic environments (Figure 5C).

Principal components analysis (PCA) on the LCA abundance
data (Figure 6A) revealed a similar pattern of explanatory power
at each level of taxonomic depth: the first three principal
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FIGURE 2 | SEM micrographs. Representative micrographs show (A) the mineral substrate consisting of sulfate salts; (B) a brine shrimp egg (one of many hundreds

seen in other micrographs), revealing the presence of higher-order biology in the system; (C) presence of in situ microbes within the soil samples; (D)

Sediment-derived microbes, visualized with SYTO 9 and propidium iodide. Original micrographs are available in the Supplementary Material, Figures S4–S8.

TABLE 2 | ICP-MS results for major oxide, total organic carbon, total sulfur composition, and sulfate from the sediment of Spotted Lake.

Sample Mineral Composition(% Weight)

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI *Total *SO4 TOC TOS

SL_1 6.13 1.27 0.64 5.12 17.56 8.42 0.33 0.08 0.06 0.02 <0.002 22.8 62.59 37.41 3.1 15.94

SL_2 7.96 1.72 0.85 4.32 25.01 3.43 0.37 0.12 0.08 0.02 <0.002 20.7 64.78 35.22 2.37 15.52

SL_3 3.23 0.7 0.33 4.32 24.1 3.02 0.25 0.05 0.03 0.01 <0.002 29.3 65.55 34.45 0.99 15.5

SL_4 6.08 1.28 0.68 3.78 25.14 2.03 0.35 0.09 0.05 0.02 <0.002 27 66.76 33.24 1.12 15.36

* Sulfate could not be directly measured by this method and thus is inferred by subtracting the total major oxide percentages from 100. The calculated levels are in keeping with

concentrations of sulfate salts measured in the water column, and account for the low Total levels acquired from ICP-MS.

components (PCs) explained 58–62% of the taxonomic variation
from class to species. Thus, we focused on the species level
analysis (Figures 6C–E), which provides the most specific
taxonomic classification at a cost of slightly reduced explained
variance for higher-order PCs.

Abundance analysis revealed that the hypersaline
environments studied could be distinguished by three main
taxonomic signatures: (archaeal) Halobacteria (associated with
the first principal component, or PC1), unclassified bacterial
sequences (PC2), and Cyanobacteria (PC3). These three main
directions of variation represent the observed combinations of
taxonomic abundances: For example, metagenomes from Chula
Vista water samples have moderate to high PC1 scores and are
dominated by Halobacteriaceae (Figure 5C). Occupying another
niche are microbial mat samples from Guerrero Negro, which

have low PC1 and range from low to high PC3 scores that are
inversely related to PC2, so that high levels of Microcoleus are
associated with low levels of uncharacterized bacteria, and vice
versa (Figure 5D); see Table S3 for metagenomic datasets.

To describe the strength between these taxonomic signatures
and each PC, a figure of merit (FoM) was defined, which is
a score ranging from 0 to 1, where 0 indicates no association
with a PC score, and 1 indicates perfect correlation (a PC is
uniquely associated with variation of the specified taxonomic
signature). Higher-order PCs are similarly associated with
specific taxonomic signatures (Figure 6E) with high figures of
merit. These associations corroborate the patterns of abundance
visible in Figure 5C. A similar analysis was also carried out
using SEED Subsystems database (Overbeek et al., 2005) for
functional analysis of protein sequences (Figure 6B). Functional
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FIGURE 3 | Spotted Lake sediment assemblages. Community composition based on Phylosift-estimated abundance within the representative pooled, high-input

sample S2, Legend: Eukaryota (blue), Archaea (green), and Bacteria (Red/Orange), with lighter shades indicating lower taxonomic rank (toward species level

resolution).

analysis (Figures 6F,G) revealed a tighter grouping of hypersaline
environments than found based on abundance (Figures 6C,D).
Functional variation was associated with phages (PC1), protein
biosynthesis (PC2), and clustering-based subsystems (PC3).
Metagenomes derived from Ace Lake, Antarctica, clustered
in a similar fashion to Spotted Lake along PC2 and PC3
(Figure 6G), in part due to high abundance of clustering-based
subsystems, a label given to genes with unknown function
but presumed functional coupling (appearance together within
multiple genomes, such as within an operon). The function-
based PCs were less associated with specific functions than in the
abundance analysis (Figure 6H; figure of merit 0.44 ± 0.18 vs.
0.69± 0.12 for abundance analysis, mean± s.d.).

DISCUSSION

The high concentration of sulfates within Spotted Lake makes
this one of the most hypersaline environments in the world—
yet microbial life is both abundant and diverse, indicating that
hypersalinity in and of itself is not a barrier to microorganisms.

Rather, habitability is likely more dependent on the water
activity and chaotropicity of the brine, controlled by the
ionic strength and composition of the solution. Community
abundance in the Spotted Lake sediments likely reflect both their
geochemical setting (anaerobic organisms such as Firmicutes and
Bacteroidetes, sulfate reducers, halophiles) and the integration of

exogenously-delivered organisms with microbes transported via
aerosols and precipitation on a global scale, seeding populations
of facultative anaerobes and aerotolerant organisms. Because salt
and other ion levels fluctuate dramatically throughout the year in

the water column (Figure S2) with impact on precipitation rates
and pore water concentrations in the sediment, we expect that
community composition in Spotted Lake sediments may vary
seasonally, similar to the archaeal abundances in Lake Tyrrell,
Victoria, Australia (Podell et al., 2014) or the relative abundance
of Proteobacteria and Cyanobacteria in the waters of nearby Hot
Lake, Washington (Crisler et al., 2012; Lindemann et al., 2013).

In comparison to other hypersaline environments, Spotted
Lake is notable for its high sequence diversity, reflected in
the high abundance of “unclassified bacteria” present, as well
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FIGURE 4 | Comparison of abundance across different sequencing libraries and samples. Phylosift-estimated abundance at the level of (A) Domain, (B) Bacteria,

(C) Firmicutes, and (D) Proteobacteria. Row labels correspond to specific sequencing libraries (see text and Table S1).

as its low levels of Archaea (Halobacteria). The latter are
aerobes that grow optimally at mesophilic temperatures, and
likely their low abundance reflected the anoxic nature of our
sediment samples and the temperate environment. The lack of
Cyanobacteria, and indeed any phototroph, in our samples was
surprising given that they thrive in the water of nearby Hot
Lake (Lindemann et al., 2013; Kilmer et al., 2014), and have
been observed within the salt crusts of Spotted Lake (Cannon,
pers. comm.). It is possible that in Spotted Lake these values are
indicative of low light levels in the water column, where the
situation of the lake (surrounded by hills) limits the amount
of direct sunlight received, which is then further mitigated by
a large amount of absorbance and scattering of any incident
light by the overlying salt layer. Further exploration of the
water column will be required to address the absence of detrital
eDNA from phototrophs. The tighter grouping of hypersaline
environments based on functional analyses emphasizes the
number of uncharacterized, but connected genes within these
systems. For example, Spotted Lake’s taxonomic and functional
similarities to Ace Lake, Antarctica may reflect their similar
sulfidic, anaerobic environments, which have nearly identical
pH (Rankin et al., 1999), though salinity within Spotted Lake
is higher by an order of magnitude. However, it is also clear
that both extreme environments harbor functionally connected
but unknown genes, and thus largely harbor uncharacterized
microbes. The extent to which many sequencing reads could not
be assigned at the taxonomic levels of family, genus, and species
is consistent with the presence of additional uncharacterized
extremophiles.

We identified little evidence of representatives from the viral
domain of life (phages, eukaryotic viruses, and virophages). In

marine environments, phages typically outnumber cells by a
factor of 5–25 and represent 5% of biomass (Suttle, 2007). Even in
oligotrophic deep sea sediments, characterized by low cell counts
and extremely low metabolic rates and turnover, phage to cell
ratios can be similar or even higher (Engelhardt et al., 2014),
consistent with both active microbial metabolism and viral-
induced death; scientists have also found evidence of virophages
within Ace Lake, which pray on viruses that infect phototrophic
algae (Yau et al., 2011), regulating host-virus interactions and
influencing overall carbon flux in the system. If viruses are
present in Spotted Lake sediments, we failed to detect them either
due to a dominance of RNA viruses to the exclusion of DNA
viruses, loss of DNA viruses during extraction despite mechanical
disruption techniques known to generally yield viral DNA, or any
viral sequences fell within the so-called “dark matter of sequence
space” for which we lack suitable marker or reference sequences.
We did however, identify sequences belonging to the phylum
Tenericutes (class Mollicutes) that lack cell walls and are typically
parasites of Eukaryotic organisms (Skennerton et al., 2016).
Many members of Mollicutes have been identified in hypersaline
environments, though not necessarily associated with a host
(Skennerton et al., 2016). Our Mollicute sequences did not relate
to any known halophilic organisms, and instead were dominated
by the Acholeplasmataceae, which are facultative anaerobes and
infectious agents of plants (Stephens et al., 1983). A small portion
(1%) of our reads belonged to the class Haloplasmatales, which
also lacks a cell wall and is an anaerobic, denitrifying bacterium,
unique to hypersaline environments (Antunes et al., 2008, 2011)

Approximately 8% of our Bacterial reads belonged to
anaerobic sulfate reducers (Desulfobacterales), with 22% of
those belonging to the genus Desulfotignum, a group of

Frontiers in Microbiology | www.frontiersin.org 7 September 2017 | Volume 8 | Article 1819

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Pontefract et al. Microbial Diversity in a Hypersaline Sulfate Lake

FIGURE 5 | Lowest common ancestor (LCA) abundance comparison of metagenomes. (A) Comparator metagenomes (86) were selected from hypersaline, air, polar,

and ocean environments representing 20 different sites or projects (Table S3). (B) The 16 taxonomic categories of highest abundance capture 50.4% of the

cumulative abundance. (C) Metagenomes clustered by similarity based on the 16 most abundant taxonomic categories.
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FIGURE 6 | Variation in abundance and function across metagenomes. (A) Principal component analysis (PCA) of Lowest Common Ancestor (LCA) -derived

abundance at different taxonomic levels. (B) PCA of SEED subsystem classification of protein sequences at different functional levels. (C–E) Principal components

scores based on LCA abundance are associated with specific taxonomic signatures (suggesting a way to classify hypersaline environments). The figure of merit

(E) indicates the precision of the correlation between a PC score and a specific taxonomic signature (see text and methods for details). (F–H) Function-based PCA

scores (F–G) reveal different variation patterns from abundance-based PCA scores, and lower figures of merit, implying a reduced correlation between PCs and

specific functions.

chemoorganotrophs/chemoautotrophs capable of using aromatic
compounds as carbon sources or electron donors. In the
absence of organic carbon, these organisms are also capable of
chemolithoautotrophy, utilizing H2 as the electron donor, with
sulfate, sulfite and thiosulfate all serving as terminal electron
acceptors (Kuever et al., 2001). The abundance of sulfate reducers
in this system, and the versatility with which some of them
can conduct their metabolisms, indicates that the production
and preservation of sulfides within this system is likely quite
prevalent, similar to Ace Lake (Burton and Barker, 1979), Lake
Lisan (Torfstein et al., 2005), and Mono Lake (Stam et al., 2010).
In Mono Lake, the low isotope fractionations at low rates of
sulfate reduction were thought to be characteristic of halophilic
sulfate reducers (Stam et al., 2010). However, Wing and Halevy
(2014) suggested that when conditions of low metabolic activity
are coupled with high concentrations of environmental sulfate,
the kinetic effect of sulfur isotope fractionation is exacerbated,

resulting in highly negative values. Thus, it is possible that a
strong isotopic signature may exist within the sediments of
Spotted Lake; further study is ongoing.

Astrobiological Implications
Hypersaline environments have been shown to preserve
biological material on timescales exceeding that of non-saline
systems, thus, the presence of paleo-sulfate lakes on Mars is
of particular interest for exobiology, as these deposits may
retain evidence of previous microbial habitation on the planet.
The biological characterization of Spotted Lake is important
in order to further delineate the limits to microbial growth in
hypersaline environments: do such conditions on present-day
or ancient Mars represent potentially habitable, versus merely
organic-preserving, environments? On Mars today, climate is
mainly regulated by its obliquity (Mischna et al., 2013), which
in recent epochs has varied with a 124,000-year cycle. This
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cycle alternatively stabilizes and destabilizes ground ice in
non-polar regions of Mars, which could alter the probability
or frequency of near-surface liquid water brines. While MgSO4

has minimal (−3.6◦C) freezing point depression, it can undergo
supersaturation allowing for an additional (4–6◦C) cooling below
this eutectic without precipitation, and at some concentrations
can be cooled up to 15◦C below the eutectic before becoming
solid (Toner et al., 2014). Freezing and salt precipitation events as
well as their associated latent heat may help buffer these deposits
against low Martian temperatures and diurnal fluctuations. It
is plausible that salt precipitation and drying-out events could
also result in the entrapment of high molarity fluids that still
may maintain transient water activity levels high enough to
support microbial activity. Any organisms in such brines would
have to cope with osmotic stress, desiccation, and freeze-thaw
stresses, as well as cosmic irradiation if within 1–2m of the
surface.

CONCLUSIONS

We have shown that Spotted Lake sediments are inhabited by
extremely diverse, mostly anaerobic organisms, with low levels
of Archaea and a near absence of detected DNA viruses. This
community composition reflects both exogenous delivery of
organisms and adaptation to the geochemical environment: the
significant presence of anaerobes and extremophiles undoubtedly
reflects the capacity of microbes to grow and divide in this
extreme environment, characterized by sulfate levels near or
at saturation, desiccation, and freeze-thaw stresses. Moreover,
analysis of the Spotted Lake genomes in comparison with other
hypersaline environments points toward a group of functional
genes associated with these brine conditions that have yet to
be characterized. Analogous sulfate-rich closed-basin paleolakes
on Mars would represent excellent locations to search for
preserved organic material and associated biomarkers, which
would be concentrated through evaporative processes, entombed
in sulfates, and preserved within lake-bed deposits, conserving
signatures of ancient life that could persist over geologic
time.
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