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The development of mirror-image biology systems and related
applicationsis hindered by the lack of effective methods to sequence
mirror-image (D-) proteins. Although natural-chirality (L-) proteins can
be sequenced by bottom-up liquid chromatography-tandem mass
spectrometry (LC-MS/MS), the sequencing of long D-peptides and
D-proteins with the same strategy requires digestion by a site-specific
D-protease before mass analysis. Here we apply solid-phase peptide
synthesis and native chemical ligation to chemically synthesize a
mirror-image version of trypsin, a widely used protease for site-specific
protein digestion. Using mirror-image trypsin digestion and LC-MS/MS,
we sequence a mirror-image large subunit ribosomal protein (L25) and a
mirror-image Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and
distinguish between different mutants of D-Dpo4. We also perform writing
and reading of digital informationin along D-peptide of 50 amino acids.
Thus, mirror-image trypsin digestion in conjunction with LC-MS/MS may
facilitate practical applications of D-peptides and D-proteins as potential
therapeutic and informational tools.

Mirror-image peptides and proteins composed of D-amino acids
and the achiral glycine have been investigated widely as potential
therapeutic and enzymatic tools because of their resistance to nat-
ural-chirality enzyme digestion and their exceptional biostability"?.
However, their resistance to natural-chirality proteases also prevents
the sequencing of long D-peptides and D-proteins by traditional bot-
tom-up liquid chromatography-tandem mass spectrometry (LC-MS/
MS), because it is necessary to carry out fragmentation through the
use of site-specific proteases such as trypsin and endopeptidase Lys-C
to generate short peptides, typically 300-2,000 m/z, for tandem
mass analysis™*.

The total chemical syntheses of mirror-image versions of vari-
ous enzymes have been realized by combining solid-phase peptide
synthesis (SPPS)® and native chemical ligation (NCL)®. These enzymes
include the human immunodeficiency virus type 1 (HIV-1) pro-
tease’, 4-hydroxy-tetrahydrodipicolinate synthase (DapA)®, Bacillus
amyloliquefaciens ribonuclease (barnase)’, African swine fever virus
polymerase X (ASFV pol X)*°, Sulfolobus solfataricus P2 DNA polymerase

IV (Dpo4)™*2, Pyrococcus furiosus (Pfu) DNA polymerase” and bacterio-
phage T7 RNA polymerase'. The chemically synthesized mirror-image
enzymes are up to 883 amino acids (aa), or ~-100 kDa', and exhibit
similar activities on their respective mirror-image substrates as their
natural-chirality counterparts”'*. However, the mirror-image versions
of site-specific proteases capable of digesting long D-peptides and
D-proteins have so far not been synthesized.

In this work, we set out to chemically synthesize a mirror-image
version of trypsin (Fig. 1a), which cleaves the peptide bond at the C
terminus of lysine or arginine. Although trypsin is a relatively small
223-aaenzyme, its in vitro folding might be problematic because the
protease digests itself’>'*, We reasoned that trypsin autolysis could be
avoided by chemically synthesizing and in vitro-folding its zymogen
form, trypsinogen®, which does not exhibit protease activity because
of aninhibitory propeptide at the N terminus until its cleavage during
activation'®2°, We further tested whether the chemically synthesized
and in vitro-folded mirror-image trypsin could enable the digestion
and sequencing of long D-peptides and D-proteins.
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Fig.1|Synthetic natural-chirality (L-) and synthetic mirror-image (D-)
trypsins. a, Structures of natural-chirality (L-) trypsin (PDB 5XWL) and mirror-
image (D-) trypsin (model generated by digital reflection). The amino acid
colours correspond to the peptide segment colours used in Extended Data
Fig.1.b, Recombinant L-, synthetic L- and synthetic D-trypsin analysed by SDS-
PAGE and stained by Coomassie brilliant blue. M, protein marker. The experiment
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was performed three times with similar results. c-e, Kinetic assays for digesting
substrate peptide L-LYAARLYAVR by the recombinant L- (c) and syntheticL-
trypsin (d), and for digesting substrate peptide D-LYAARLYAVR by the synthetic
D-trypsin (e). Data are presented as best-fit curves, with individual data points
(n=23)and 95% confidence intervals (Cls).

Results
Synthesis and characterization of mirror-image trypsin
To perform their total chemical synthesis, the natural-chirality and
mirror-image porcine trypsinogens were each divided into five peptide
segments ranging from 29 to 64 aain length (Extended Data Fig.1). All
ofthe peptide segments were prepared by 9-fluorenylmethoxycarbonyl
(Fmoc)-SPPS, purified by reversed-phase high-performance liquid
chromatography (RP-HPLC), and assembled by hydrazide-based
NCL?, followed by metal-free radical-based desulfurization® to con-
vert unprotected cysteine to alanine®. After the synthesis, ligation,
purification and lyophilization (Supplementary Figs.1-22), the L-and
D- versions of trypsinogen were obtained at milligram scales with the
expected molecular mass of 24.4 kDa (Supplementary Table 1). Mean-
while, we expressed and purified the recombinant porcine trypsinogen
from Escherichia coli (E. coli). Therecombinant L-, syntheticL- and syn-
thetic D- versions of trypsinogen were folded and autoactivated in vitro
(Methods), thenanalysed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE; Fig. 1b and Supplementary Table 2).
Tobiochemically characterize the autoactivated recombinantL-,
synthetic L-and synthetic D- versions of trypsin, the L- and D- versions of
ashortsubstrate peptide (LYAARLYAVR) were chemically synthesized
by SPPS and purified by RP-HPLC (Extended Data Fig. 2a,b), and the
trypsin-digested products were analysed by RP~-HPLC*. We found
that the synthetic L-peptide was digestible by the recombinant L- and
synthetic L-trypsin, but not by the synthetic D-trypsin. The synthetic
D-peptide, onthe other hand, was digestible by the synthetic D-trypsin,
but not by the recombinant L- and synthetic L-trypsin (Extended Data
Fig.2c-h). The reciprocal chiral specificity was consistent with previ-
ous studies on the synthetic mirror-image HIV-1 protease’. The initial
reactionrates were determined at different substrate concentrations,

and fitted to the Michaelis—Menten equation, suggesting that the
Michaelis constants (K,,) of the recombinant L-, synthetic L- and syn-
thetic D-trypsin were similar, whereas the catalytic constants (k) of
the synthetic L- and synthetic D-trypsin were about half that of the
recombinant L-trypsin (Fig. 1c-e), probably due to the lower purity of
the synthetic trypsins (Supplementary Figs.11and 22).

Digestion and sequencing of ribosomal protein D-L25

Next, we applied the synthetic D-trypsin to the bottom-up sequenc-
ing of small D-proteins. Ribosomal proteins are generally lysine- and
arginine-richand thus are suitable substrates for trypsin digestion. We
tested the enzymatic activities of the recombinant L-, synthetic L-and
synthetic D-trypsin on the synthetic L- and synthetic D-L25, an E. coli
ribosomal protein®. We found that the synthetic L-L25 was digestible
by the recombinantL- and synthetic L-trypsin, but not by the synthetic
D-trypsin, whereas the synthetic b-L25 was digestible by the synthetic
D-trypsin, but not by the recombinant L- and synthetic L-trypsin
(Fig.2a-fand Extended Data Fig. 3a-e).

The trypsin-digested and desalted peptide fragments of L- and
D-L25 were analysed by LC-MS/MS. The peptide-spectrum matches
(PSMs; Supplementary Data) resulted in a protein sequence coverage
of 98.9% for L-L25 after digestion by the recombinant L- (Fig. 2g) and
synthetic L-trypsin (Fig. 2h), and 98.9% for D-L25 after digestion by the
synthetic D-trypsin (Fig. 2i), hence effectively validating the b-protein
sequence of D-L25. Meanwhile, the cleavage site specificity was con-
firmed by the precursor intensity of tryptic and nontryptic peptides',
suggesting that the recombinant L-, syntheticL-and synthetic D-trypsin
displayed similar cleavage preferences at the C terminus of lysine or
arginine (Extended DataFig. 4a), with proline at the P1’site prohibiting
trypsin cleavage (Extended Data Fig. 4¢)**”. These results suggested
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Fig.2|Digestion and sequencing of ribosomal protein D-L25. a-f, Analytical
RP-HPLC chromatograms of the synthetic L-L25 before (a) and after (b) digestion
by the recombinant L-trypsin, and before (c) and after (d) digestion by the
synthetic L-trypsin, and of the synthetic D-L25 before (e) and after (f) digestion

by the synthetic D-trypsin. g-i, Protein sequence coverage of the synthetic
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L-L25 digested by the recombinant L- (g) and synthetic L-trypsin (h), and of the
synthetic D-L25 by the synthetic D-trypsin (i). Amino acids covered by PSMs of >1
are highlighted. Blue filled triangles, trypsin cleavage sites. Blue open triangles,
prohibited trypsin cleavage sites with proline at the P1’ site. The experiments
were performed twice with similar results.

that, for protein sequencing, the synthetic D-trypsin was equally effec-
tive and site-specificin digesting small D-proteinsincluding the 94-aa
D-L25as the recombinant L- and the synthetic L-trypsin.

Digestion and sequencing of D-Dpo4

Next, we tested the synthetic D-trypsin on the bottom-up sequencing
of alarger D-protein, Dpo4-5m, a mutant version of Dpo4 that facili-
tated its total chemical synthesis™>?%, Because the 358-aa Dpo4-5m
(with an N-terminal His, tag) is much larger than the 94-aa ribosomal
protein L25, denaturation of Dpo4-5m was performed before trypsin
digestion (Methods). We found that the recombinant L-Dpo4-5m was
digestible by the recombinant L- and synthetic L-trypsin, but not by the
synthetic D-trypsin, whereas the synthetic b-Dpo4-5m was digestible
by the synthetic D-trypsin, but not by the recombinantL- and synthetic
L-trypsin (Fig. 3a-f and Extended Data Fig. 3f-j).

The trypsin-digested and desalted peptide fragments of L- and
D-Dpo4-5m were analysed by LC-MS/MS. The PSMs (Supplementary
Data) resulted in protein sequence coverages of 99.2% and 97.8% for
L-Dpo4-5m after digestion by the recombinant L- (Fig. 3g) and synthetic
L-trypsin (Fig. 3h), respectively, and 99.4% for D-Dpo4-5m after diges-
tion by the synthetic D-trypsin (Fig. 3i), hence effectively validating

the D-protein sequence of b-Dpo4-5m. Similarly, the cleavage site
specificity was confirmed by the precursor intensity of tryptic and
nontryptic peptides', suggesting that the recombinant L-, synthetic
L-and synthetic D-trypsin displayed similar cleavage preferences at the
C terminus of lysine or arginine (Extended Data Fig. 4b), with proline
atthe P1’site prohibiting trypsin cleavage (Extended Data Fig. 4d)**?".
These results suggested that, for protein sequencing, the synthetic
D-trypsin was equally effective and site-specific in digesting large
D-proteinsincluding the 358-aa b-Dpo4-5m as the recombinantL-and
syntheticL-trypsin.

Distinguishing between different mutants of D-Dpo4
Encouraged by the high protein sequence coverage of D-Dpo4-5m,
we sought to apply the mirror-image trypsin digestion and D-protein
sequencing method to distinguish between two different mutants of
D-Dpo4: D-Dpo4-5m and D-Dpo4-5m-Y12S (a mutant version capable
of polymerizing L-RNA, with a tyrosine replaced by serine and all six
methionines by norleucines when compared with b-Dpo4-5m)%.

The trypsin-digested and desalted peptide fragments of the syn-
thetic D-Dpo4-5mand D-Dpo4-5m-Y12S were analysed by LC-MS/MS. To
distinguish between the two different mutants of D-Dpo4, we focused
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Fig.3|Digestion and sequencing of D-Dpo4. a-f, Analytical RP-HPLC
chromatograms of the recombinant L-Dpo4-5m before (a) and after (b)
digestion by the recombinant L-trypsin, and before (c) and after (d) digestion
by the synthetic L-trypsin, and of the synthetic b-Dpo4-5m before (e) and after
(f) digestion by the synthetic D-trypsin. g-i, Protein sequence coverage of the

Sequence coverage = 99.4%

recombinant L-Dpo4-5m digested by the recombinant L- (g) and synthetic L-
trypsin (h), and of the synthetic D-Dpo4-5m by the synthetic D-trypsin (i). Amino
acids covered by PSMs of >1are highlighted. Blue filled triangles, trypsin cleavage
sites. Blue open triangles, prohibited trypsin cleavage sites with proline at the P1’
site. The experiments were performed twice with similar results.

on the PSMs (Supplementary Data) containing the aforementioned
sevenmutated residues. PSMs of D-Dpo4-5m allowed the identification
of all the six methionines and the unmutated tyrosine, whereas PSMs
of D-Dpo4-5m-Y12S allowed the identification of all the six norleucines
and the mutated serine (Table 1). These results suggested that the
mirror-image trypsin digestion and D-protein sequencing method was
capable of distinguishing between different mutants of aD-protein.

Writing and reading information in along D-peptide

Although information storage in short L- and D-peptides with
lengths of 10-18 aa has been reported’®~*, the retrieval of infor-
mation from D-peptides longer than ~20 aa remains challenging

without a site-specific protease, limiting the amount of information
that can be stored in D-peptides. We reasoned that using D-trypsin,
information-storing long D-peptides can be digested into short pep-
tidesand sequenced by LC-MS/MS, enabling the storage of more infor-
mationinlong D-peptides.

Here we selected a 20-character phrase ‘Mirror-image biology’
and encoded it into a 50-aa D-peptide, chemically synthesized by
SPPS and purified by RP-HPLC, with five arginines to provide trypsin
cleavage sites and five index amino acids to provide the order of the
trypsin-digested peptide fragments (Fig. 4a). The information-storing
D-peptide was digested by the synthetic D-trypsin into five 10-aa
D-peptide fragments, and the desalted digestion products were
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Fig. 4| Writing and reading information in along p-peptide. a, Design of
aninformation-storing 50-aa D-peptide, chemically synthesized by SPPS and
purified by RP-HPLC. Blue filled triangles, trypsin cleavage sites. Amino acids
inred are N-terminal index amino acids of the 10-aa D-peptide fragments, in
theorder A, F, G, H, L. Amino acids in blue are C-terminal arginines of the 10-aa
D-peptide fragments. b, ESI-MS spectrum of the mirror-image trypsin-digested
information-storing 50-aa D-peptide. ¢,d, Tandem mass spectrum (c) and de

novo sequencing (d), with an example of the tandem mass spectra of the 10-aa
D-peptide fragment indexed by alanine (AHWAGGHGHR) shown here and the rest
shownin Extended DataFig. 5. e, Sorting of de novo sequencing results by the
sums of the ALC of the potential 10-aa D-peptide sequences indexed by alanine.
The five 10-aa D-peptide sequences (e and Extended Data Fig. 5) were arranged

by the index amino acids and decoded into the original phrase, ‘Mirror-image
biology’ (a). The experiment was performed twice with similar results.

analysed by electrospray ionization-mass spectrometry (ESI-MS;
Fig. 4b), followed by LC-MS/MS (Fig. 4c). The de novo sequencing
results (Fig. 4d) were filtered (Methods), and the sums of the average
local confidence (ALC) of the potential 10-aa D-peptide sequences were
sorted to determine their sequences (Fig. 4e and Extended DataFig. 5),
whichwerearranged by theindexaminoacidsand decodedintothe orig-
inal phrase, ‘Mirror-image biology’ (Fig. 4a).Incomparison, LC-MS/MS
analysis of the undigested information-storing 50-aa D-peptide failed
to determine its sequence (Extended Data Fig. 6). Therefore, using
D-trypsin, information can beretrieved from long D-peptides, expand-
ingthe amount of information that canbe stored in long D-peptides and
securing theinformation with the synthetic D-trypsin as a ‘key’, despite
the lack of ability to be amplified by mirror-image polymerase chain
reaction (PCR) like the information-storing L-DNAs®.

Discussion

In this work, we demonstrated mirror-image protein sequencing by
chemically synthesizing the mirror-image version of a site-specific
protease, trypsin, enabling the sequencing of D-proteins and informa-
tion storage in long D-peptides, echoing the first chemically synthe-
sized D-enzyme, the mirror-image HIV-1 protease’. The mirror-image

trypsin digestion and D-protein sequencing method may become a
useful tool for the quality control of chemically synthesized b-peptide
and D-protein drugs® . Being able to distinguish between differ-
ent mutants of D-proteins, the mirror-image trypsin digestion and
D-protein sequencing method may also be applied to the identifica-
tion of D-proteins with modified amino acids. Combined with de novo
sequencing, mirror-image trypsin digestion may alsobecome a helping
handindiscovering D-peptide drugs when applied in conjunction with
screening methods such as affinity selection-MS (AS-MS)***°, as well as
in selecting small-molecule drugs with information-storing D-peptide
barcodes®. Moreover, the mirror-image versions of trypsin and other
proteases can eliminate D-peptides and D-proteins after use as a contain-
ment strategy. In addition, the chemically synthesized L-trypsin, free
from protease and other protein contamination from traditional pro-
teinexpression systems'**!, may provide a contamination-free tool for
sample preparation prior to LC-MS/MS analysis in proteomic studies.

The next key step in establishing the mirror-image central dogma
of molecular biology is torealize mirror-image translation by synthesiz-
ing amirror-image ribosome'*"**** Since LC-MS/MS iswidely used
inthe quantitative and semi-quantitative analyses of different protein

components in protein and RNA-protein complexes* **including the
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Table 1| Distinguishing between different mutants of
D-Dpo4

Mutant b-Dpo4 Residue PSMs of PSMs of
trypsin-digested trypsin-digested
D-Dpo4-5m? D-Dpo4-5m-Y12S?
Met7 1 (6]
Tyr18 1 0
Met82 m 0
D-Dpo4-5m Met95 16 0
Met163 94 0
Met222 27 0
Met257 4 0]
Nle7 (0] 2
Ser18 (0] 2
Nle82 0 209
D-Dpo4-5m-Y12S  Nle95 0 49
Nle163 (0] 220
Nle222 (0] 16
Nle257 (0] 13

2PSMs for distinguishing between the two mutants of b-Dpo4: b-Dpo4-5m and D-Dpo4-
5m-Y12S. Y12S corresponds to the Tyr18 to Ser18 mutation in D-Dpo4-5m-Y12S with an
N-terminal b-His, tag.

ribosome, the mirror-image trypsin digestion and D-protein sequencing
method may become a useful tool for validating mirror-image ribosome
assembly, aswell as the D-protein products of mirror-image translation.

One of the limitations of the current mirror-image trypsin diges-
tionand D-protein sequencing method is thatit only digests D-proteins
at the C terminus of D-lysine or D-arginine. This can be potentially
complemented by chemically synthesizing the mirror-image versions
of other widely used site-specific proteases, such as chymotrypsin,
endopeptidase Lys-C and endopeptidase Glu-C*. Another limitation is
that the current synthetic route suffers from low yield (estimated over-
allsynthesis yield of -0.5%), in part due to the suboptimal synthesis and
ligation efficiencies (Supplementary Figs.1-22), which may affect the
yields (Supplementary Table 1), purities (Supplementary Figs.11and 22)
and activities (Fig. 1d,e) of the synthetic L-and synthetic D-trypsin. This
canbe potentiallyimproved by more advanced synthesis methods and
by split-protein designs with point mutations™.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Materials

The bD-DNA oligos and the porcine trypsinogen gene for recombinant
protein expression were ordered from Genewiz. Tris base and guani-
dine hydrochloride (Gn-HCI) were purchased from Amresco. Phos-
phate buffered saline (PBS), L-cystine and L-cysteine were purchased
from Solarbio Life Sciences. Urea, CaCl,and Amicon Ultra centrifugal
filter (0.5 ml, 10,000 MWCO) were purchased from Sigma. Trans-
Start FastPfu Fly DNA polymerase, the pEASY-Uni seamless cloning
and assembly kit and ProteinRuler I were purchased from TransGen
Biotech. The Sep-Pak tC18 cartridge (100 mg sorbent per cartridge)
was purchased from Waters Corp. The 2-chlorotrityl chloride resin
was purchased from Tianjin Nankai Hecheng Science and Technol-
ogy. Wang ChemMatrix resin, Fmoc-L-amino acids, Fmoc-D-amino
acids, Boc-L-Ser(Fmoc-L-Val)-OH, Boc-D-Ser(Fmoc-D-Val)-OH and
O-(6-chlorobenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium
hexafluorophosphate (HCTU) were purchased from GL Biochem.
N,N-dimethylformamide (DMF), N,N-diisopropylethylamine (DIEA),
trifluoroacetic acid (TFA), thioanisole, triisopropylsilane (TIPS),
1,2-ethanedithiol (EDT), PdCl, and 2,2’-azobis[2-(2-imidazolin-2-yl)
propane]dihydrochloride (VA-044) were purchased from J&K Sci-
entific. 4-Mercaptophenylacetic acid (MPAA) was purchased from
Alfa Aesar Chemicals. Piperidine, Na,HPO,-12H,0, NaH,PO,-2H,0
and NaNO, were purchased from Sinopharm Chemical Reagent.
NaCl, NaOH and HCI were purchased from Sinopharm Chemi-
cal Reagent. Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP-HCI), 9-fluorenylmethyl carbazate (Fmoc-hydrazide), ethyl
cyanoglyoxylate-2-oxime (Oxyma), N,N’-diisopropylcarbodiimide
(DIC) and pL-1,4-dithiothreitol (DTT) were purchased from Adamas
Reagent. Glutathione reduced (GSH) was purchased from Acros
Organics. Anhydrous ether was purchased from Beijing Tongguang
Fine Chemicals. Acetonitrile (CH;CN, HPLC grade) was purchase
fromJ. T. Baker.

Trypsinogen expression and purification

The porcine trypsinogen gene was amplified by PCR using TransStart
FastPfu Fly DNA polymerase and cloned into the pET-28¢ vector with
the pEASY-Uni seamless cloning and assembly kit. The recombinant
trypsinogen was expressed in E. colistrain BL21(DE3) inlysogeny broth
(LB) medium. Theinduced cells were collected and resuspended in PBS.
The cell lysate was disrupted by sonication at 4 °C for 10 min, and the
proteins were subsequently precipitated by centrifugation at20,000g
at4 °Cfor40 min. The precipitate was further washed three times with
PBS. Thetrypsinogenininclusionbodieswas solubilizedin 8 M Gn-HCl,
purified by RP-HPLC, and lyophilized.

Fmoc-SPPS

Allthe peptides were synthesized by Fmoc-SPPS on Liberty Blue auto-
mated microwave peptide synthesizers (CEM Corp.).Isoacyl dipeptide®
was incorporated at positions Val199-Ser200 in L-/D-trypsinogen-5.
The peptides with C-terminal carboxylate, such as L-/D-trypsinogen-5,
were synthesized on Wang ChemMatrix resin (0.6 mmol g™*) preloaded
with the first C-terminal residue, and the other peptides were synthe-
sized on Fmoc-hydrazine 2-chlorotrityl resin (0.53 mmol g ™) to prepare
peptide hydrazides®, the scale of which was typically 0.25 mmol. The
firstresidue onthe Wang ChemMatrix resin was manually attached by a
double coupling method:inthe first coupling reaction, the amino acid
was coupled at 30 °C for 40 min with 1 mmol amino acid, 0.98 mmol
HCTU and 2 mmol DIEA dissolved in 4 ml DMF, after which the resin
was washed with DMF. Without deprotection, the second coupling
reaction was performed at 25 °C overnight with 1 mmol amino acid,
1 mmol Oxyma and 1 mmol DIC dissolved in 4 ml DMF. All the resins
were swelled in DMF for 5-10 min before use. The Fmoc groups of the
resins and coupled amino acids were removed by treatment with20%
piperidineand 0.1 M Oxymain DMF. The coupling of amino acids except

Fmoc-Cys(Trt)-OH (Trt, triphenylmethyl), Fmoc-Cys(Acm)-OH (Acm,
acetamidomethyl) and Fmoc-His(Trt)-OH was performed in 10 ml
DMF with1 mmol amino acid, 1 mmol Oxyma and 2 mmol DIC at 85 °C
for 3 min. The coupling of Fmoc-Cys(Trt)-OH, Fmoc-Cys(Acm)-OH
and Fmoc-His(Trt)-OH was performed at 50 °C for 10 min to reduce
side reactions at higher temperatures. The coupling of trifluoroacetyl
thiazolidine-4-caboxylic acid-OH (Tfa-Thz-OH) was performed with
Oxyma/DIC activation at room temperature overnight®. The synthe-
sized peptides were cleaved from resin using H,0/thioanisole/TIPS/
EDT/TFA (0.5/0.5/0.5/0.25/8.25, vol/vol) under agitation at 27 °C for
2.5h. Most of the TFA in the mixture was removed by N, blowing, and
cold ether was added to precipitate the crude peptides. After cen-
trifugation, the supernatant was discarded and the precipitate was
washed twice with ether. The crude peptides were dissolved in CH,CN/
H,0 or 6 M Gn-HCI, analysed by RP-HPLC and ESI-MS, and purified by
semi-preparative RP-HPLC.

Native chemical ligation

The peptide segments were assembled by hydrazide-based NCL with
a convergent assembly strategy>’. The C-terminal peptide hydrazide
segment (4-6 mM) was dissolved in acidified ligation buffer (6 M
Gn-HCI, 0.1 MNaH,PO,, pH 3.0), with pH monitored by a FiveEasy Plus
pH meter and InLab Micro pH electrode (Mettler Toledo). The mixture
was cooled in anice-salt bath at -10 °C, after which 25 mM NaNO, in
acidified ligation buffer was added. The reaction mixture was kept in
theice-salt bath under stirring for 25 min, after which100 mM MPAA
in 6 M Gn-HCl, 0.1 M Na,HPO,, pH 5-6 was added. After the addition
of the N-terminal cysteine peptide (to a 2-3 mM final concentration
for both the C-terminal and N-terminal peptide segments), the pH of
the reaction mixture was adjusted to 6.5 at room temperature. After
overnight reaction, 150 mM TCEPin ligation buffer (pH 7.0) was added
todilutethereaction mixture twice, under stirring at room temperature
for 30 min. Next, the ligation product was analysed by RP-HPLC and
ESI-MS, and purified by semi-preparative RP-HPLC. The preparations
of L-/D-trypsinogen-10 and L-/D-trypsinogen-11 suffered from low liga-
tion yields (Supplementary Figs. 10, 11, 21 and 22), probably because
the solubility of L-/D-trypsinogen-5and L-/D-trypsinogen-10 decreased
after the O-acylisopeptide bond being converted to the native N-acyl
peptide bond™.

Desulfurization

Metal-free radical-based desulfurization* was performed by dissolv-
ing the cysteine-containing peptides (3 mg ml™) in desulfurization
buffer (6 M Gn-HCI, 0.1 M Na,HPO,,200 mM TCEP, 40 mM GSH, 20 mM
VA-044, pH 6.8) under stirring at 37 °C overnight, and the desulfuriza-
tion product was analysed by RP-HPLC and ESI-MS, and purified by
semi-preparative RP-HPLC.

Acetamidomethyl deprotection

Pd-assisted Acm deprotection®* was performed by dissolving the
Acm-protected peptides in Acm deprotection buffer (6 M Gn-HClI,
0.1 M Na,HPO,, 40 mM TCEP, pH 7.0), after which 20 mM (final con-
centration) PdCl, was added, under stirring at 25 °C overnight, with
50 mM (final concentration) DTT added to quench the reaction. The
reaction mixture wasstirred for 1 h, analysed by RP-HPLC and ESI-MS,
and purified by semi-preparative RP-HPLC.

RP-HPLC and ESI-MS

All the RP-HPLC analysis and purification experiments were per-
formed onShimadzu Prominence HPLC systems (Shimadzu Corp.) with
SPD-20A UV-vis detectors and LC-20AT solvent delivery units. Ultimate
XB-C4 120 A (5 pm, 21.2 x 250 mm, Welch Materials) and C18 120 A
(5 pm, 21.2 x 250 mm) columns were used to purify the crude peptides
ataflow rate of 8 ml min™. Ultimate XB-C4 120 A (5 um, 10 x 250 mm)
columns were used to separate the ligation products at a flow rate of
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4 ml min., Ultimate XB-C4 300 A (5 pm, 4.6 x 250 mm) and Inertsil C4
150 A (5 pm, 4.6 x 250 mm, GL Sciences) columns were used to monitor
the ligation reactions and analyse the purity of the ligation products
andthetrypsin-digested peptides or proteins at aflow rate of 1 ml min™.
The molecular mass with standard deviation (s.d.) of each purified
peptide segment and ligation product was characterized by ESI-MS
onaShimadzu LC/MS-2020 mass spectrometer (Shimadzu Corp.). The
final products (L-trypsinogen-11 and D-trypsinogen-11) were further
characterized by high-resolution ESI-MS on a Waters SYNAPT G2-Si
HDMS mass spectrometer (Waters Corp.), with the purities of the final
products estimated without deconvolution.

Folding and activation of trypsinogen in vitro

Lyophilized recombinant L-, synthetic L- and synthetic D- versions of
trypsinogen were dissolved in denaturation buffer (8 M urea, 20 mM
DTT,20 mM Tris-HCI, pH 8.5) at room temperature for 4 h. Trypsinogen
folding was performed by diluting the protein with 39x volumes of
renaturation buffer (20 mM Tris-HCI, 2 M urea, 1 mM L-cystine, 3 mM
L-cysteine, pH 7.5) under stirring at 4 °C for 12 h. After folding, the
precipitates were removed by centrifugation at 12,000g at 4 °C for
30 min, followed by ultrafiltration using an Amicon Ultra centrifugal
filter (0.5 ml, 10,000 MWCO). The trypsinogen was autoactivated in
activation buffer (40 mM Tris-HCI, 0.1 MNaCl,10 mM CaCl,, pH 8.0) at
37 °Cfor12 h, analysed by 15% SDS-PAGE, and scanned by a ChemiDoc
XRS+ system (Bio-Rad Laboratories). The autoactivated trypsin was
aliquoted and stored at —20 °C.

Trypsinkinetic assay

Substrate peptides (L-/D-LYAARLYAVR), chemically synthesized by SPPS
and purified by RP-HPLC, were used for the trypsin kinetic assays. The
substrate peptides were dissolved and diluted into activation buffer
(40 mM Tris-HCI, 0.1 M NaCl, 10 mM CacCl,, pH 8.0), digested at 37 °C
for10 minwithafinal trypsin concentration of 100 nM, and quenched
by adding 1x volume of 1% TFA in H,0. The trypsin-digested substrate
peptides were analysed by RP-HPLC using an Inertsil C4 150 A (5 um,
4.6 x 250 mm) column, with the peak areas of UV absorption at 214 nm
used to calculate the concentrations of the substrate peptides and
trypsin-digested products with a standard curve. The initial reaction
rates were calculated using the concentrations of the trypsin-digested
products divided by the reaction time, and least-square curve fit-
ting was used to calculate K, and k., in the Michaelis-Menten equa-
tion using GraphPad Prism software (version 10.0.2, Dotmatics Ltd).
Accordingto the different k., values, we adjusted the concentrations
of recombinantL-, synthetic L-and synthetic D-trypsin to compensate
for their different activities (enzyme-to-substrate ratios 0f1/133,1/80,
1/53 (wt/wt), respectively).

Trypsin digestion of peptides and proteins

The synthetic L- and synthetic D- versions of E. coli ribosomal protein
L25, synthetic D-Dpo4-5m and synthetic D-Dpo4-5m-Y12S were syn-
thesized in our previous work'>??%?° The synthetic L- and synthetic
D- versions of L25, and synthetic long D-peptide for information stor-
age were directly dissolved and diluted into activation buffer (40 mM
Tris-HCI, 0.1 M NaCl, 10 mM CaCl,, pH 8.0) before trypsin digestion. The
recombinantL-Dpo4-5m, synthetic D-Dpo4-5m and synthetic D-Dpo4-
5m-Y12Swere denatured inabuffer containing8 Mureaand 5 mMDTT
for 1h, after which 12.5 mM iodoacetamide was added to alkylate the
cysteinesinthe dark atroom temperature for 30 min.lodoacetamide
was inactivated by exposure to room light for 15 min, and the pro-
tein solution was diluted with 5x volumes of activation buffer before
trypsin digestion. The trypsin digestion was performed at 37 °C for
12 h, quenched by adding 1x volume of 1% TFA in H,O, and analysed by
analytical RP-HPLC using an Inertsil C4 150 A (5 um, 4.6 x 250 mm)
column with a gradient of 5-95% CH,CN (with 0.1% TFA) in H,O (with
0.1% TFA) over 30 min.

LC-MS/MS analysis of trypsin-digested peptides and proteins
Thetrypsin-digested peptides and proteins were desalted by a Sep-Pak
tC18 cartridge, dried using a CV200 vacuum centrifugal concentrator
(BeijingJM Technology), and dissolved in 20 pl 0.1% TFA in H,0, of which
6 plwas used for LC-MS/MS analysis. The samples were separated using
a100-pm x 150-mm fused silica capillary column, packed in-house with
ReproSil-Pur C18-AQ1.9-pmresin (Dr Maisch), with agradient of 5-95%
CH,CN (with 0.1%formicacid) inH,0 (with 0.1% formic acid) over 60 min
ataflowrateof 0.30 pl min, directly interfaced with an Orbitrap Explo-
ris480 mass spectrometer (Thermo Fisher Scientific). For sequencing
the ribosomal protein L25 and different mutants of Dpo4, the tandem
mass spectrawere searched by Proteome Discoverer software (version
2.5, Thermo Fisher Scientific) against a protein database containing
the proteome of E. coli (UniProt Taxonomy 83333, 4,530 proteins),
porcine trypsin (UniProt PO0761) and different mutants of Dpo4 (refs.
11,13,28,29) (with norleucines in Dpo4-5m-Y12S replaced by leucines of
the same mass), with the following settings: full trypsin specificity (for
calculating protein sequence coverage) or no enzyme specificity (for
calculating the frequency of non-specific cleavage), two missed cleav-
ages allowed, oxidation of methionine (+16.00 Da) and deamination
of asparagine and glutamine (+0.98 Da) set to variable modifications,
carbamidomethyl of cysteine (+57.02 Da) set to static modification
for sequencing the mutants of Dpo4, precursor ion mass tolerance set
to 3 ppm with nonlinear mass recalibration applied, and fragmention
mass tolerance set to 0.02 Da. The false discovery rate was set to 0.01
based on the g-value calculated by Percolator in Proteome Discoverer
software. For the analysis of cleavage site specificity, the intensity of
the precursor ion of each PSM was used to calculate the amino-acid
frequency at the P1site. For information storage in a long D-peptide,
PEAKS Studio software (version 8.5, Biolnformatics Solutions) was used
for de novo sequencing, with the following settings: no enzyme specific-
ity, oxidation of methionine (+16.00 Da) and deamination of asparagine
and glutamine (+0.98 Da) set to variable modifications, precursorion
mass tolerance set to 10 ppm, and fragment ion mass tolerance set to
0.02 Da, with the ALC calculated by PEAKS Studio software.

Writing and reading informationin along p-peptide

To encode the 128 American Standard Code for Information Inter-
change (ASCII) codes, 12 different amino acids were used as two-letter
codes (12*>128). Among the 20 proteinogenic amino acids, lysine and
arginine were used as cleavage sites, proline at the P1’ site prohibits
trypsin cleavage, aspartate and glutamate at the P2, P3, P1’ or P2’ sites
inhibit trypsin cleavage®, cysteine forms disulfide bond, and isoleucine
cannot be distinguished from leucine by MS. Among the remaining
13 amino acids, the hydrophobic amino acid valine was not chosen in
order to improve the solubility of the synthetic long D-peptides. The
remaining 12 amino acids (alanine, phenylalanine, glycine, histidine,
leucine, methionine, asparagine, glutamine, serine, threonine, trypto-
phanand tyrosine) were used for long D-peptide information storage.
The printable ASClI codes were converted to duodecimal numbers, and
tothe corresponding amino acids (Supplementary Table 3). Arginines
wereinsertedinto the C terminus of each fragment to provide trypsin
cleavagesites, and index amino acids were inserted into the N terminus
ofeach fragment to provide the order of the trypsin-digested peptide
fragments. A20-character phrase, ‘Mirror-image biology’, was encoded
into a50-aa D-peptide, chemically synthesized by SPPS and purified by
RP-HPLC. The information-storing 50-aa D-peptide was digested by
the synthetic D-trypsin into five 10-aa D-peptide fragments, and the
desalted digestion products were analysed by ESI-MS, followed by
LC-MS/MS. The de novo sequencing results were filtered using Micro-
soft Excel 2019 software (version 16.43, Microsoft Corp.) by alength of
10 aa, an ALC above 80%, with an ESI-MS m/z error of +0.5. The sums
of the ALC of the potential 10-aa D-peptide sequences were sorted to
determine their sequences, which were arranged by the index amino
acids and decoded into the original phrase, ‘Mirror-image biology’.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this Article.

Data availability

All data are available in the main text or the Supplementary Informa-
tion. The £. coli proteome database (Taxonomy 83333) was downloaded
from UniProt (https://www.uniprot.org). The LC-MS/MS data were
deposited at the ProteomeXchange Consortium viathe PRIDE partner
repository with the dataset identifier PXD046228. Source data are
provided with this paper.
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Extended Data Fig. 1| Design of the synthetic L-/D-trypsinogen. a, Amino acid sequence of the synthetic L-/D-trypsinogen (UniProt PO0761). The amino acid colours
correspond to the peptide segment colours used in b and Fig. 1a. b, Synthetic route for the total chemical synthesis of L-/D-trypsinogen.
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Extended Data Fig. 2| Chiral specificity of trypsin digestion of substrate
peptides. a,b, Analytical RP-HPLC chromatograms of the chemically
synthesized L-LYAARLYAVR (a) and D-LYAARLYAVR (b) before digestion.
c,d, Analytical RP-HPLC chromatograms of L-LYAARLYAVR (c) and D-
LYAARLYAVR (d) digested by the recombinant L-trypsin. e,f, Analytical
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RP-HPLC chromatograms of L-LYAARLYAVR (e) and D-LYAARLYAVR (f) digested

by the synthetic L-trypsin. g,h, Analytical RP~-HPLC chromatograms of

L-LYAARLYAVR (g) and D-LYAARLYAVR (h) digested by the synthetic D-trypsin.

The experiments were performed three times with similar results.
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Extended Data Fig. 3| Chiral specificity of trypsin digestion of ribosomal
protein L25 and Dpo4. a-c, Analytical RP—-HPLC chromatograms of the
synthetic D-L25 before (a) and after digestion by the recombinantL- (b) and
synthetic L-trypsin (c). d,e, Analytical RP~-HPLC chromatograms of the synthetic
L-L25 before (d) and after digestion by the synthetic D-trypsin (e). f-h, Analytical
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RP-HPLC chromatograms of the synthetic D-Dpo4-5m before (f) and after
digestion by the recombinant L- (g) and synthetic L-trypsin (h). ij, Analytical
RP-HPLC chromatograms of the recombinant L-Dpo4-5m before (i) and after
digestion by the synthetic D-trypsin (j). The experiments were performed twice
withsimilar results.
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Extended Data Fig. 4| Cleavage site specificity of trypsin digestion of trypsin cleavage sites with lysine at the P1site and with or without proline at the
ribosomal protein L25 and Dpo4. a, Observed cleavage frequency at the P1site P1’site, displayed on alogscale. d, Observed cleavage frequency of L-Dpo4-5m
of L-L25 digested by the recombinant L- and synthetic L-trypsin, and of b-L25 by digested by the recombinant L- and synthetic L-trypsin, and of D-Dpo4-5m by the
the synthetic D-trypsin. b, Observed cleavage frequency at the P1site of L-Dpo4- synthetic D-trypsin, at trypsin cleavage sites with lysine at the P1site and with
Smdigested by the recombinant L- and synthetic L-trypsin, and of D-Dpo4-5m by or without proline at the P’ site, displayed on alog scale. The experiments were
the synthetic D-trypsin. ¢, Observed cleavage frequency of L-L25 digested by the performed twice with similar results.

recombinantL- and synthetic L-trypsin, and of D-L25 by the synthetic D-trypsin, at
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Extended Data Fig. 5| Sorting of de novo sequencing results. a-e, Sorting of de novo sequencing results by the sums of the ALC of the potential 10-aa D-peptide
sequences indexed by alanine (a, also shown in Fig. 4e), phenylalanine (b), glycine (c), histidine (d), and leucine (e). The experiment was performed twice with

similar results.
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Extended Data Fig. 6 | LC-MS/MS analysis of the undigested information- storing 50-aa D-peptide (b), with an example of the tandem mass spectra of the
storing 50-aaD-peptide. a, Design of an information-storing 50-aa D-peptide, undigested D-peptide shown (c¢). No 50-aa sequence was present in the de novo
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